

Synthesis of D-Erythrose and D-Threose Derived Nitrones and Cycloadditions to Styrene

Juraj Kubáň,^a Iva Blanáriková,^a Ľubor Fišera,^a* Libuše Jarošková,^a Marion Fengler-Veith,^b Volker Jäger,^b* Jozef Kožíšek,^c Otakar Humpa,^d Naďa Prónayová,^e and Vratislav Langer^f

^aDepartment of Organic Chemistry, Faculty of Chemical Technology, Slovak University of Technology, SK-812 37 Bratislava, Slovak Republic

^bInstitute of Organic Chemistry, University of Stuttgart, D-70 569 Stuttgart, Germany ^cDepartment of Inorganic Chemistry, Faculty of Chemical Technology, Slovak University of Technology, SK-812 37 Bratislava, Slovak Republic

^dDepartment of Organic Chemistry, Masaryk University, CZ-61 137 Brno, Czech Republic
^eCentral Laboratory of Chemical Techniques, Faculty of Chemical
Technology, Slovak University of Technology, SK-812 37 Bratislava, Slovak Republic
^fDepartment of Inorganic Environmental Chemistry, Chalmers University of Technology,
SE-41296 Göteborg, Sweden

Received 22 April 1999; accepted 26 May 1999

Abstract: The new nitrones derived from cyclic acetals of D-erythrose (2a-c) and D-threose (8) react with styrene to afford the corresponding 3,5-disubstituted diastereomeric isoxazolidines 3-6 and 9-12. The stereoselectivity was dependent on the steric hindrance of the nitrone. The major products 3a-c (55-58 %) and 9 (73 %) were found to have the C-3/C-4' erythro and C-3/C-5 cis relative configuration by X-ray analysis. Its formation can be rationalized by less hindered endo attack of the Z-nitrone in an antiperiplanar manner with respect to the largest group of the cyclic acetal. © 1999 Elsevier Science Ltd. All rights reserved.

INTRODUCTION

The nitrone-olefin 1,3-dipolar cycloaddition is a powerful reaction in that it can create as many as three new contiguous stereogenic centers in a single step. Based on an evaluation of the nitrone cycloaddition, it was felt that the configuration of these new centers could be influenced if the reaction system was properly designed. Regio- and stereoselective nitrone cycloaddition, followed by reduction of the N-O bond, to produce both an amino and a hydroxy function, allows the synthesis of many products of potential interest.

Over the years, nitrones have become important building blocks in organic synthesis.^{1,4} However, in spite of that well-documented utility there are only scattered reports dealing with the preparation of nitrones with a chiral *C*-substituent.^{5,6} With the goal of developing a simple route to polyhydroxylated derivatives of pyrrolizidines,⁷ which have been shown to display antiviral activity,⁸ *via* an asymmetric 1,3-dipolar cycloaddition we have prepared chiral sugar-derived nitrones as template for cycloaddition.

In this paper we report in detail the preparation of new D-erythrose- and D-threose- derived nitrones and the stereoselectivity of their cycloadditions to styrene as a model dipolarophile; our preliminary results in this area have been the subject of a recent communication.⁹

Our first step of this approach is indicated in Scheme 1. 2,4-O-Ethylidene-D-erythrose (1) was prepared from 4.6-O-ethylidene-D-glucose (readily available from D-glucose in 70 % yield) by oxidation with periodate in almost quantitative yield. 10 However, no aldehydic resonance appeared in ¹H and ¹³C NMR spectra of 1, since the protected β-hydroxy-aldehyde exists and was isolated as a crystalline dimer, in accordance with previous papers. 10-12 Reformation of the monomer 1 was facilitated in our case by adding a catalytic amount of 2-pyridone, 12b and from this more rapidly equilibrating mixture the aldehyde 1 underwent smooth condensation with the respective hydroxylamine in increased yield (50% versus 73% for nitrone 2b). Likewise, treatment of the dimer with ethyl acetate containing a catalytic amount of glacial acetic acid or 100 % phosphoric acid is reported to afford the monomer 1.11 The nitrones 2a-c, with a "chiral" C-substituent, were prepared from the aldehyde 1 by the reaction with the appropriate N-substituted hydroxylamine in dichloromethane in the presence of anhydrous magnesium sulfate, according to the procedure of Dondoni et al. used for the preparation of chiral N-benzyl nitrones. 13 A catalytic amount of 2-pyridone for the formation of aldehyde monomer 1 proved beneficial to improve the yield of nitrone 2. In the case of the N-methyl nitrone 2c this procedure was modified by adding DABCO to the reaction mixture. Single, diastereomerically pure nitrones 2a-c were isolated in pure state as crystalline solids in all cases, and the expected Z configuration was confirmed by nuclear Overhauser enhancement difference spectroscopy (NOEDS).

The nitrones **2a-c** were subjected to 1,3-dipolar cycloaddition with styrene. Our concern was to study the asymmetric induction from the nitrone part. There are eight possible products, *cis-* and *trans*-isomers for each pair of regioisomers from *anti* and *syn* attack (Scheme 1, only 5-substituted regioisomers are depicted). With each of the nitrones the reaction proceeded smoothly in a highly regioselective manner; 3,4-disubstituted adducts were not detected in crude reaction mixture by NMR spectra. The cycloadditions of the nitrones **2a-c** to styrene carried out in boiling toluene for 10

h gave a mixture of four diastereomeric isoxazolidines **3-6** in excellent yield (82-94%). The major adducts **3a-c** could be separated and isolated by flash chromatography. The regiochemical assignments came straightforwardly from the analysis of diagnostic signals in the **NMR** spectra. The resonance positions of the isoxazolidine ring protons serve as sensitive probes for regiochemical assignment. The proton **5-H** in **3-6** resonates at lower field as compared to the proton **3-H**; *e.g.* **5.19** *vs.* **4.17** ppm for **3a**.

- i, RNHOH, CH₂Cl₂, 2-pyridone (cat.), rt
- ii, styrene, toluene, 110°C

Scheme 1

The ratio of diastereoisomers was determined from quantitative ¹³C NMR spectra, by integration of the peaks from C-4 of the isoxazolidines. The 500 MHz NMR spectrum of the crude product mixture from the nitrone **2a** and styrene was well resolved and showed four peaks for C-4 at δ 39.05, 37.88, 37.16 and 36.09 in the ratio of 82 : 9 : 5 : 4 (Table 1). The structure of the separated major isomer **3a** was unambiguously assigned the *cis*-3,5-configuration by means of a detailed NMR analysis including 2D experiments. The *cis* relationship of substituents at C-3 and C-5 in **3a** is assigned on the basis of NOEDS. A 2.5 % enhancement on signal 3-H following saturation of signal 5-H shows a *cis* relationship between these protons; irradiation of 3-H causes a similar enhancement

(1.8 %) confirming this *cis* relationship. Finally, the *erythro* C-3/C-4′ relative configuration in 3a was elucidated by X-ray analysis (Figure 1).²¹ This also clearly proved the suggested *cis* relationship between3-H and 5-H. That 3b and 3c have the same configuration as 3a is inferred from the diagnostic signals and NOEDS results.

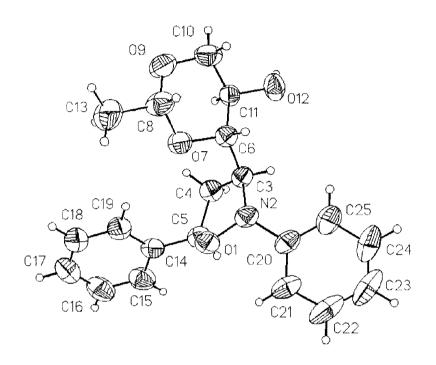


Fig. 1. X-ray analysis of 3a

Table 1. 1,3-Dipolar Cycloaddition of C-α-Alkoxyalkyl-substituted Nitrones to Styrene

Entry	Nitrone	Yield	erythro-cis	threo-cis	erythro-trans	threo-trans	erythro:	cis:trans
		(%)					threo	
1	2a	94	82	9	5	4	87 : 13	91 : 9
2	2b	82	81	12	7	-	88 : 12	93 : 7
3	2c	85	69	17	10	4	79 : 21	86 : 14
4	8	84	90	5	3	2	93 : 7	95 : 5
5	14ª	78	73	11	9	7	82 : 18	84 : 16
6	15ª	89	39	30	20	11	59 : 41	69 : 31

aRef.6b

The use of D-galactose as starting material gave access to the D-threo nitrone 8, as indicated in Scheme 2. D-galactose was converted to the 4,6-O-ethylideneacetal which was treated with

periodate to give 2,4-*O*-ethylidene-D-threose (7) in almost quantitative yield. The D-threose nitrone 8 was prepared from the aldehyde 7 on treatment with *N*-benzylhydroxylamine in 73% yield after crystallization, as a stable crystalline material, by the route indicated above for the preparation of the erythrose nitrones 2a-c.

i, BnNHOH, CH₂Cl₂, 2-pyridone, rt

ii, styrene, toluene, 110°C

Scheme 2

The nitrones 2a-c and 8 could be stored in a refrigerator at 4 °C for several months without notable decomposition. The *Z*-configuration of the nitrone 8 was assigned on the basis of NOEDS. The nitrone 8 reacted with styrene in boiling toluene within 10 h in a highly regioselective fashion to furnish the diastereomeric cycloadducts 9-12 in 84% combined yield. The highest diastereoselectivities in this series were observed here with the D-*threo* nitrone 8 and stereoisomeric products were found in a ratio of 90 : 5 : 3 : 2 (Table 1). The ratio of stereoisomers 9-12 was determined from quantitative carbon NMR spectra (500 MHz) by integration of peaks at δ 40.29 (2%). 39.59 (90%), 39.29 (3%) and 38.05 (5%), arising from the absorptions of C-4 atom of the isoxazolidines. The major adduct 9 could be separated by flash column chromatography and was isolated in 73% yield. The ¹H NMR spectrum of this material was well resolved, and its analysis confirmed the indicated regioselectivity. The stereostructure of isoxazolidine 9 was assigned based on NOE experiments and the comparison of 9 with isoxazolidine 3a, whose structure had been determined by X-ray analysis. In particular, the interactions were observed between 3-H and both 5-

H and 4-H_a, and between 5-H and each of 3-H, 4-H_a and 4-H_b. That the isoxazolidine 9 has the same relative configuration as **3a** is inferred from the close agreement of resonance positions and coupling constants for the key signals.

The analysis of product configuration indicates that **3a-c** and **9** arise from a cycloaddition which has occurred on the more sterically-accessible face of the nitrone, *via* an *endo*-transition state with antiperiplanar relationship of the phenyl and *N*-alkyl(aryl) group. The stereoselectivity of the nitrone/alkene cycloaddition is difficult to predict, and would appear to depend on minor structural changes in either component. Dipolar cycloaddition of *C*-α-alkoxy-substituted nitrones had been shown to occur preferentially *via* transition states in which the developing carbon-carbon bond avoids steric interaction with the more bulky group. In the cases studied here, three structural features may influence the stereochemical outcome of such cycloadditions: *E/Z*-isomerization around the C=N bond, nitrone facial selectivity, and *endo/exo* preference. We have therefore focused our attention on the potential interconversion of the *Z*- and *E*-isomers of the starting nitrones. Heating a toluene solution of nitrones **2b** and **8** for 10h, respectively, proceeded without any isomerization, the corresponding *E*-nitrones were not detected by HNMR spectra. There was no thermal interconversion between the prepared adducts in refluxing toluene, thus indicating that the cycloaddition proceeded irreversibly under the reaction conditions to give the kinetically controlled products **3-6** and **9-12**, respectively.

As previously observed in 1,3-dipolar cycloadditions with C- α -alkoxy substituted nitrones 13, $^{2.6a}$ 14 6b and 15 6b , the *anti*-facial preference accounts for formation of the isoxazolidines 3, 5, 9 and 11, and that an *endo* approach of the dipole occurs to provide the isoxazolidines 3, 4, 9 and 10. On the other hand, an *exo* approach of the dipole is involved in the generation of the isoxazolidines 5, 6, 11 and 12.

The high diastereoselectivity found with 2b and styrene can be ascribed to the more favoured approach of the dipole 2b to styrene, to give *erythro-cis* 3b and *threo-cis* 4b as depicted in Figure

2. It is reasonable that attack of Z-2b proceeds via the less hindered endo transition state and in an antiperiplanar manner with respect to the largest group of the heterocyclic acetal to give the major product isoxazolidine **3b** possessing C-3/C-4' *erythro* and C-3/C-5 *cis*-configuration. The more pronounced steric hindrance present in the approach leading to the *threo-cis* diastereomer **4b** might explain the observed ratio *erythro/threo* 88 : 12 (Table 1). It is noteworthy that the transition states shown have the α -oxygen of the nitrone in "outside" and "inside" orientation, thus avoiding the unfavourable interaction of $\sigma^*(C-0)$ with the HOMO - π -system (if C-O were *anti*-periplanar). ¹⁶

Fig. 2

These suggested transition states can also explain the observed preponderance of the adducts *cis* C-3/C-5 *vs.* the products *trans* C-3/C-5. The ratios found 93 : 7 (*N*-Bn), 91 : 9 (*N*-Ph), and 86 : 14 (*N*-Me), point out that the steric hindrance between the phenyl group in the dipolarophile and the *N*-substituent in the dipole in the *exo* approach, leading to the 3,5-*trans*-isoxazolidine adducts 5 and 6 is responsible for the high diastereoselectivity of the nitrones 2a-c in the order 2b(*N*-Bn) > 2a(*N*-Ph) > 2c(*N*-Me) (Table 1). A similar explanation was first used by Brandi *et al.* for the cycloaddition of the nitrone 14 to 2,3-dihydro-1-phenyl-1*H*-phosphole-1-oxide.¹⁷ This explanation, that steric factors are clearly important for the orientation of the dipoles 2 in the cycloaddition to styrene, is also supported by the fact, that the cycloaddition of the D-*threo* nitrone 8 proceeds with the best *anti*facial (93 : 7) and *endo*-facial (95 : 5) preference in this series (entry 4, Table 1). The results on the stereoselectivity of the chiral nitrones 14 and 15 to styrene, published previously by us, are in accord with the aforementioned importance of steric factors (entries 5 and 6, Table 1).

In conclusion, 1,3-dipolar cycloadditions of *C*-α-alkoxy-substituted chiral nitrones would appear to proceed with useful diastereoselectivity, but the degree of stereodifferentiation also depends upon the respective *N*-substituent present in the nitrone. The stereoselectivity of the cycloaddition is influenced by the steric hindrance of both the *N*- and *C*-substituent of the nitrone, *i.e.* the selectivity increases as the nitrogen substituent of the nitrone becomes bulkier. The best diastereoselectivity was achieved with the *N*-benzyl nitrones 2b and 8 derived from D-erythrose and D-threose. The major products 3 and 9 were found to have the *erythro* - configuration at C-3/C-4′ and *cis* - substitution at C-3/C-5. Its favoured formation can be rationalized *via* the less hindered *endo* approach of the *Z*-nitrone antiperiplanar to the largest substituent of the heterocyclic acetal moiety.

EXPERIMENTAL

All starting materials and reagents are commercially available (Fluka, Merck or Avocado) and were used without further purification. Solvents were dried using standard procedures. Thin-layer chromatography (TLC) was used for monitoring of reaction courses and was carried out on aluminium plates coated with silica $60F_{254}$ (0.25 mm thickness, Merck). Eluents are indicated in the text. All column chromatography was done by using the flash chromatography technique, and was carried out on silica 60 (0.040—0.063 mm, Merck). Melting points were determined on a Kofler hot plate apparatus and are uncorrected. Elemental analyses were performed by the microanalysis service of the Department of Analytical Chemistry, Slovak University of Technology, Bratislava.

The ^1H and ^{13}C NMR spectra of deuterochloroform solutions were measured with Varian VXR 300 (300 MHz) and VXR-500 (500 MHz) instruments, tetramethylsilane being the internal reference. Optical rotations [α] were measured on an IBZ Messtechnik Polar-L μ P polarimeter at the sodium D line (589 nm) using a 1 dm cell with dichloromethane as solvent. Previously described methods were used to prepare *N*-benzylhydroxylamine, 18 1, $^{10-12}$ and 7. 14

(*Z*)-*N*-(1-Deoxy-2,4-*O*-ethylidene-D-*erythro*-1-ylidene)methylamine *N*-oxide (2c). $\{(2R,4S,5R)-(Z)-N-(2)-N-(2)-N-(2)-N-(2)-N-(2)-N-(2)-N-(2)-N-(2)-1,3-dioxan-4-yl)methylene]methylamine$ *N* $-oxide}. To a well-stirred solution of the D-erythrose acetal 1 (3.03 g, 20.5 mmol) with a catalytic amount of 2-pyridone (100 mg) in CH₂Cl₂ (25 mL),$ *N* $-methylhydroxylamine hydrochloride (2.21 g, 2.3 mmol), 1,4-diazabicyclo[2.2.2]octane (DABCO, 4.55 g, 31.0 mmol), and anhydrous MgSO₄ (2.91 g, 24.1 mmol) were added and stirring was maintained at room temperature overnight (16 h). The precipitate was then filtered off and the filtrate poured into water (50 mL). The aqueous layer was extracted with CH₂Cl₂ (4 × 25 mL), dried (over MgSO₄), and evaporated. The crude product (2.89 g, 79%) was purified by recrystallization from MeOH/EtOAc (20 : 80) to give the nitrone 2c (2.60 g, 71% yield after crystallization) as a colourless crystalline material., m.p. = 171–172 °C, <math>[\alpha]_D^{25}$ =

+138.2 (c 0.22, CH₂Cl₂), R_f = 0.55 in MeOH/EtOAc (30 : 70) or 0.40 in MeOH/EtOAc (20 : 80). For C₇H₁₃NO₄, MW 175.18: calc. C 47.99 %, H 7.48 %, N 8.00 %; found C 47.64 %, H 7.25 %, N 8.01 %. IR: v / cm⁻¹: 3415 br w v(OH), 3059 s, 3034 m, 2990 m, 2930 s, 2876 s, 2806 m, 1630 s v(C=N), 1508 m, 1464 m, 1453 m, 1429 s, 1412 s, 1393 m, 1379 m, 1360 m, 1340 w, 1289 m, 1234 m, 1186 vs, 1136 vs v(N-O), 1123 vs, 1115 s, 1092 vs, 1065 m, 1049 s, 1036 vs, 955 s, 901 m, 885 vs, 851 m, 826 m, 718 m, 696 m. ¹H NMR (300 MHz), δ: 6.92 (d, 1 H, J_{1.2} = 4.3 Hz, 1-H), 5.97 (br s, 1 H, OH), 4.75-4.71 (m, 1 H, 2-H), 4.71 (q, 1 H, J = 5.1 Hz, CHCH₃), 4.18 (dd, 1 H, J_{3.4e} = 5.2 Hz, J_{4a.4e} = 11.1 Hz, 4-H_e), 3.82 (ddd, 1 H, J_{2.3} = 9.2 Hz, J_{3.4a} = 10.1 Hz, 3-H), 3.75 (s, 3 H, NCH₃), 3.47 (dd, 1 H, 4-H_a), 1.33 (d, 3 H, CH<u>CH₃</u>). ¹³C NMR (75 MHz), δ: 141.56 (C-1), 98.78 (CHCH₃), 76.77 (C-2), 70.82 (C-4), 65.75 (C-3), 52.13 (NCH₃), 20.12 (CH<u>CH₃</u>).

(Z)-N-(1-Deoxy-2,4-O-ethylidene-D-erythro-1-ylidene)phenylamine N-oxide (2a). $\{(2R,4S,5R)$ -(Z)-N-(Z)-(Z[(2-methyl-1,3-dioxan-4-yl)methylene]phenylamine N-oxide}. According to the procedure described for 2c; with the exception that DABCO was omitted. The crude product was purified by recrystallization from EtOAc/i-hexane (66: 34) and gave the nitrone 2a (66%) as a colourless crystalline material with m.p. = 156–157 °C., $[\alpha]_D^{25}$ = +33.6 (c 0.25, CH₂Cl₂), and R_c = 0.60 in MeOH/EtOAc (10 : 90) or 0.34 in EtOAc/*i*-hexane (80 : 20). For C₁₂H₁₅NO₄, MW: 237.24 calc. C 60.75 %, H 6.37 %, N 5.90 %; found C 60.56 %, H 6.34 %, N 5.95 %. IR: v / cm⁻¹: 3421 br w v(OH), 3214 m, 3092 m, 3069 m, 2996 m, 2928 m, 2872 m, 1618 w, 1607 w v(C=N), 1578 m, 1489 m, 1460 s, 1418 s, 1381 m, 1356 w, 1289 m, 1269 w, 1229 w, 1202 s, 1184 n, 1169 m, 1144 vs, 1130 s, 1111 s, 1092 vs, 1071 vs, 1042 m, 1022 vs, 918 s, 895 m, 858 m, 833 m, 760 vs, 689 m, 681 m. ^{1}H NMR (300 MHz), δ : 7.74–7.70 (m, 2 H, NC₆H₅), 7.51–7.47 (m, 3 H, NC_6H_5), 7.44 (d, 1 H, $J_{1,2}$ = 4.4 Hz, 1-H) 5.95 (br s, 1 H, OH), 4.98 (dd, 1 H, $J_{2,3}$ = 9.3 Hz, 2-H), 4.77 (q, 1 H, J = 5.1 Hz, <u>CH</u>CH₃), 4.23 (dd, 1 H, $J_{3,4e}$ = 5.2 Hz, $J_{4a,4e}$ = 11.1 Hz, 4-H_e), 3.95 (ddd, 1 H, $J_{3,4a}$ = 10.0 Hz, 3-H), 3.55 (dd, 1 H, 4-H_a), 1.37 (d, 3 H, CH<u>CH₃</u>). ¹³C NMR (75 MHz), δ : 140.32 (C-1), 145.56, 130.98, 129.52 and 121.42 (NC₆H₅), 98.75 (<u>CH</u>CH₃), 77.40 (C-2), 71.03 (C-4), 66.26 (C-3), 20.22 (CH<u>CH₃).</u>

(*Z*)-*N*-(1-Deoxy-2,4-*O*-ethylidene-D-*erythro*-1-ylidene)benzylamine *N*-oxide (2b). {(2R, 4S, 5R)-(2)-*N*-[(2-methyl-1,3-dioxan-4-yl)methylene]benzylamine *N*-oxide}. According to the procedure described for 2a. The crude product was purified by recrystallization from mixture of MeOH/*i*-hexane (50 : 50) and gave the nitrone 2b (73 %) as a colourless crystalline material with m.p. = 145–146 °C. $[\alpha]_D^{25}$ = +87.1 (*c* 0.20, CH₂Cl₂), and R₇ = 0.57 in MeOH/EtOAc (10 : 90) or 0.34 in EtOAc. For C₁₃H₁₇NO₄, MW: 251.16 calc. C 62.14 %, H 6.82 %, N 5.57 %; found C 62.15 %, H 6.86 %, N 5.57 %. IR: v / cm⁻¹: 3252 br s v(OH), 3079 s, 3034 m, 2990 s, 2938 m, 2921 m, 2884 s, 1605 s v(C=N), 1583 w, 1499 m, 1474 w, 1455 s, 1408 s, 1379 m, 1294 m, 1264 m, 1236 s, 1202 s, 1194 s, 1154 s, 1132 vs, 1113 vs, 1084 vs, 1038 s, 1022 vs, 974 w, 945 s, 903 m, 891 m, 847 w, 812 w, 748 m, 733 s, 706 s. ¹H NMR (300 MHz), δ : 7.48-7.38 (m, 5 H, NCH₂C₆H₅), 6.83 (d, 1 H, J_{1,2} = 4.1 Hz, 1-H), 5.90 (br s, 1 H, OH), 4.93 (s, 2 H, NCH₂C₆H₅), 4.75 (dd, 1 H, J_{2,3} = 9.2 Hz, 2-H), 4.67 (q, 1 H, J = 5.1, CHCH₃), 4.17 (dd, 1 H, J_{3,4e} = 5.2 Hz, J_{4a,4e} = 11.1 Hz, 4-H_e), 3.82 (ddd, 1 H, J_{3,4a} =

10.1 Hz, 3-H), 3.46 (dd, 1 H, 4-H_a), 1.30 (d, 3 H, CH<u>CH₃</u>). ¹³C NMR (75 MHz), δ : 141.00 (C-1), 131.47, 129.60, 129.53 and 129.27 (NCH₂C₆H₅), 98.78 (<u>CH</u>CH₃), 77.27 (C-2), 71.09 (C-4), 69.11 (N<u>CH₂</u>C₆H₅), 66.15 (C-3), 20.28 (CH<u>CH₃</u>).

(*Z*)-*W*(1-Deoxy-2,4-*O*-ethylidene-D-*threo*-1-yliden)benzylamine *N*-oxide (8). {(*ZS*, *4R*, *5R*)-(*Z*)-*N*-{((2-methyl-1,3-dioxan-4-yl)methylene]benzylamine *N*-oxide}. According to the procedure described for 2a from D-threose. The crude product was purified by recrystallization from mixture of EtOAc/i-hexane (60 : 40) and gave the nitrone 8 (73 % after crystallization) as a colourless crystalline material, m. p. = 181–182 °C, $[\alpha]_D^{25}$ = -116.1 (*c* 0.19, CH₂Cl₂), and R_f = 0.51 in MeOH/EtOAc (20 : 80) or 0.26 in MeOH/EtOAc (10 : 90). For C₁₃H₁₇NO₄, MW: 251.16 calc. C 62.14 %, H 6.82 %, N 5.57 %; found C 62.27 %, H 6.93 %, N 5.51 %. IR: v / cm⁻¹: 3445 br s v(OH), 3081 m, 3032 w, 2994 m, 2965 w, 2940 w, 2909 w, 2874 w, 1609 m, 1603 m v(C=N), 1497 w, 1458 m, 1426 m, 1408 m, 1256 w, 1206 s, 1142 vs, 1128 vs, 1107 m, 1086 vs, 1067 s, 1051 m, 1030 w, 983 m, 941 m, 914 m, 862 m, 833 s, 764 m, 708 vs. ¹H NMR (300 MHz), δ : 7.44–7.35 (m, 5 H, NCH₂C₆H₅), 6.79 (d, 1 H, J_{1,2} = 4.9 Hz, 1-H), 4.97 (d, 1 H, 2-H), 4.89 (s, 2 H, NCH₂C₆H₅), 4.82 (q, 1 H, J = 5.1 Hz, CHCH₃), 4.02 (s, 1 H, 3-H), 4.00 (d, 1 H, J_{4a,4e} = 11.1 Hz, 4-H_e), 3.91 (d, 1 H, 4-H_a), 3.15 (br s, 1 H, OH), 1.34 (d, 3 H, CHCH₃). ¹³C NMR (75 MHz), δ : 136.83 (C-1), 132.22, 129.43, 129.14 and 129.02 (NCH₂C₆H₅), 99.68 (CHCH₃), 75.97 (C-2), 71.61 (C-4), 69.46 (NCH₂C₆H₅), 62.67 (C-3), 20.85 (CHCH₃).

Cycloaddition of nitrones 2a-c, 8 to styrene. General procedure.

To a stirred solution of the nitrone (4.0 mmol) in toluene (12 mL) was added styrene (1.15 eq.) and the reaction mixture was heated at reflux (110 °C) for 10 h. The resulting brown mixture was evaporated under reduced pressure.

Cycloaddition of nitrone 2a to styrene. (3S,5R,2'R,4'S,5'R)-3-(5'-hydroxy-2'-methyl-1',3'-dioxanyl) -2,5-diphenylisoxazolidine (3a) The crude mixture (1.40 g, ~100 %) of four diastereomers in the ratio 82 : 9 : 5 : 4 (by ¹³C NMR) was purified and separated by column chromatography on silica (40 g, 2.0 cm × 21 cm) eluting with EtOAc/ \dot{r} hexane (5 : 95) to give the major product 3a as a first fraction (812 mg, 58 %), and the mixture of the major and three minor diastereoisomers 4a-6a (507 mg, 36%) as the second fraction. Combined yield 1.32 g (94 %). Data for 3a, colourless crystals, m.p. = 141–142 °C, $[\alpha]_D^{25}$ = -68.5 (c 0.29, CH₂Cl₂), R_f = 0.59 in EtOAc/ \dot{r} hexane (70 : 30) or 0.38 in EtOAc/ \dot{r} hexane (40 : 60). For $C_{20}H_{23}NO_4$, MW: 341.40 calc. C 70.36 %, H 6.79 %, N 4.10 %; found C 70.42 %, H 6.80 %, N 3.99 %. ¹H NMR (500 MHz), δ : 7.46-7.33 (m, 7 H, C_6H_5); 7.23-7.21 (m, 2 H, C_6H_5); 7.09-7.05 (m, 1 H, C_6H_5); 5.19 (dd, 1 H, C_6H_5); 7.23-7.21 (m, 2 H, C_6H_5); 7.09-7.05 (m, 1 H, C_6H_5); 5.19 (dd, 1 H, C_6H_5); 4.71 (q, 1 H, C_6H_5); 4.37 (br s, 1 H, OH); 4.21 (dd, 1 H, C_6H_5); 5.4 Hz, C_6H_5 0 (dd, 1 H, C_6H_5 1); 4.70 (ddd, 1 H, C_6H_5 2); 4.37 (br s, 1 H, OH); 4.21 (dd, 1 H, C_6H_5 3); 4.37 (dd, 1 H, C_6H_5 3); 4.37 (dd, 1 H, C_6H_5 4); 4.17 (ddd, 1 H, C_6H_5 5); 4.37 (dd, 1 H, C_6H_5 6); 4.37 (ddd, 1 H, C_6H_5 6); 4.30 (ddd, 1 H, C_6H_5 6); 2.30

(ddd, 1 H, 4-H_a); 1.23 (d, 3 H, (CH<u>CH₃)</u>. ¹³C NMR (125 MHz), δ : 149.70, 138.36, 129.41, 128.74, 128.37, 126.65, 123.24 and 115.05 (C₆H₅); 99.34 (<u>CH</u>CH₃); 81.00 (C-4'); 79.72 (C-5); 70.70 (C-3); 70.10 (C-6'); 66.69 (C-5'); 40.20 (C-4); 20.56(CH<u>CH₃</u>).

Cycloaddition of nitrone 2b to styrene. (3S,5R,2'R,4'S,5'R)-3-(5'-hydroxy-2'-methyl-1',3'-dioxanyl) -2-benzyl-5-phenylisoxazolidine (3b). The crude mixture (1.42 g, ~100 %) of three diastereomers in the ratio 81 : 12 : 7 (by ¹³C NMR) was purified and separated by column chromatography on silica (40 g, 2.2 cm x 19 cm) eluting with EtOAc/i-hexane (5 : 95) to give as first major product 3b (782 mg, 55 %), diastereomer 5b (85 mg, 6%) and the mixture of the major and two minor diastereoisomers 4b, 5b (298 mg, 21 %) as second fraction. Combined yield 1.16 g (82 %). Data for 3b, colourless crystals, m.p. = 162-163 °C, $[\alpha]_p^{25} = -161$ 30.9 (c 0.18, CH_2Cl_2), $R_f = 0.54$ in EtOAc/i-hexane (60 : 40) or 0.38 in EtOAc/i-hexane (40 : 60). For $C_{21}H_{25}NO_4$, MW: 355.43 calc. C 70.96 %, H 7.09 %, N 3.94 %; found C 70.68 %, H 7.22 %, N 4.01 %. ¹H NMR (500 MHz), δ : 7.40-7.32 (m, 10 H, C₆H₅); 5.49 (br s, 1 H, OH); 5.45 (dd, 1 H, J_{4a,5} = 7.5 Hz, J_{4b,5} = 8.8 Hz, 5-H); 4.57 (q, 1 H, J = 5.1 Hz, $\underline{CHCH_3}$); 4.28 (d, 1 H, J = 12.2 Hz, $\underline{NCH_2C_6H_5}$); 4.06 (dd, 1 H, $\underline{J_{5',6e'}}$ = 4.1 Hz, $J_{6a',6e'} = 10.7$ Hz, $6'-H_e$); 3.94 (d, 1 H, $NCH_2C_6H_5$); 3.49-3.46 (m, 1 H, 3-H); 3.36 (dd, 1 H, $J_{6a',5'} = 9.7$ Hz, 6-H_a), 3.32-3.26 (m, 2 H, 4´-H, 5´-H); 3.00 (ddd, 1 H, $J_{3,4b}$ = 8.4 Hz, $J_{4a,4b}$ = 13.4 Hz, 4-H_b); 2.35 (ddd, 1 H, $J_{3,4a}$ = 2.6 Hz, 4-H_a); 1.23 (d, 3 H, CH<u>CH₂). ¹³C NMR (125 MHz), δ : 139.41, 135.09, 129.58, 128.88, 128.66,</u> 128.28, 128.05, and 126.42 (C_6H_5); 99.14 (CHCH₃); 80.38 (C-4'); 78.99 (C-5); 69.92 (C-6'); 68.70 (C-3); 66.25 (C-5'); 60.92 (NCH₂C₆H₅); 38.98 (C-4); 20.47 CHCH₂). Data for minor isoxazolidine 5b. Yield 6 %, m.p. = 128–130 °C, $[\alpha]_D^{25}$ = +14.0 (c 0.17, CH₂Cl₂), R_f = 0.47 in EtOAc/i-hexane (60 : 40) or 0.33 in EtOAc/ihexane (40 : 60). ¹H NMR (300 MHz), δ : 7.41-7.33 (m, 10 H, C₆H₅); 5.47 (br s, 1 H, OH); 5.29 (dd, 1 H, J_{4a.5} = 10.1 Hz, $J_{4b,5} = 7.0$ Hz, 5-H); 4.69 (q, 1 H, J = 5.1 Hz, $CHCH_3$); 4.31 (d, 1 H, J = 12.2 Hz, $N-CH_2C_6H_5$); 4.01 (dd, 1 H, $J_{6'a\,6'e} = 10.5$ Hz, $J_{5'.6'e} = 4.7$ Hz, 6'-H_e); 3.81 (d, 1 H, N-CH₂C₆H₅); 3.55 (dd, 1 H, $J_{3.4'} = 9.3$ Hz, $J_{3.4a} = 9.3$ 6.8 Hz, 3-H); 3.47-3.21 (m, 3 H, 4'-H, 5'-H, 6'-H_a); 2.88 (dd, 1 H, $J_{4a,4b}$ = 13.1 Hz, 4-H_b); 2.48 (ddd, 1 H, 4-H_a); 1.30 (d, 3 H, J = 5.1 Hz, CHCH₃). ¹³C NMR (62 MHz), δ : 141.15, 135.63, 129.52, 128.93, 128.66, 128.25, 127.83 and 125.96 (C₆H₅); 99.21 (CHCH₃); 81.38 (C-4'); 78.18 (C-5); 70.03 (C-6'); 68.80 (C-3); 65.96 (C-5'); 63.88 (NCH₂C₆H₅); 37.02 (C-4); 20.61 (CHCH₃).

Cycloaddition of nitrone 2c with styrene. (3S,5R,2'R,4'S,5'R)-3-(5'-hydroxy-2'-methyl-1',3'-dioxanyl)-2-methyl-5-phenyl isoxazolidine (3c). The crude mixture (1.16 g, ~100 %) of four diastereomers in the ratio 69 : 17 : 10 : 4 (by ¹³C NMR) was purified and separated by column chromatography on silica (35 g, 2.0 cm × 21 cm) eluting with EtOAc/ \neq hexane (5 : 95) to give major product 3c as a first fraction (638 mg, 55%) and the mixture of the major and three minor diastereoisomers 4c-6c (348 mg, 30%) as the second fraction. Combined yield 986 mg (85%). Data for 3c, colourless crystals, m.p. = 65–67 °C, $[\alpha]_D^{25}$ = -16.3 (c 0.19, CH₂Cl₂), R_f = 0.38 in EtOAc/ \neq hexane (80 : 20) or 0.25 in EtOAc/ \neq hexane (60 : 40). For C₁₅H₂₁NO₄, MW: 279.33 calc. C 64.50 %, H 7.58 %, N 5.01 %; found C 64.63 %, H 7.33 %, N 5.27 %. ¹H NMR (500 MHz), δ :

7.37-7.29 (m, 5 H, C_6H_5); 5.49 (br s, 1 H, OH); 5.34 (dd, 1 H, $J_{4a,5} = 7.8$ Hz, $J_{4b,5} = 8.6$ Hz, 5-H); 4.61 (q, 1 H, $J_{5.6a} = 5.1$ Hz, C_1H_2 , C_1H_3 ; 4.15 (dd, 1 H, $J_{5.6a} = 5.4$ Hz, $J_{6a,6e} = 11.0$ Hz, 6′-H_e); 3.67 (ddd, 1 H, $J_{4.5} = 8.5$ Hz, $J_{5.6a} = 10.0$ Hz, 5′-H); 3.40 (dd, 1 H, 6′-H_a); 3.30-3.28 (m, 2 H, 3-H, 4′-H); 2.94 (ddd, 1 H, $J_{3,4b} = 8.0$ Hz, $J_{4a,4b} = 13.2$ Hz, $J_{4b,5} = 8.6$ Hz, $J_{4a,5} = 7.8$ Hz, $J_{4a,5$

Cycloaddition of nitrone 8 to styrene. (3R,5R,2'S,4'R,5'R)-3-(5'-hydroxy-2'-methyl-1',3'-dioxanyl)-2-benzyl-5-phenylisoxazolidine (9). The crude mixture (1.45 g, ~100 %) of four diastereomers in the ratio 90 : 5 : 3 : 2 (by ¹³C NMR) was purified and separated by column chromatography on silica gel (40 g, 1.5 cm × 36 cm) eluting with EtOAc/ \dot{r} hexanes (15 : 85) to give as first major product 9 (1.06 g, 73 %) and the mixture of major and three minor diastereoisomers 10-12 (160 mg, 11 %) as the second fraction. Combined yield 1.22 g (84 %). Data for 9, colourless crystals, m.p. = 110-112 °C, [α] $_{0}^{25}$ = +51.0 (c 0.19, CH₂Cl₂), R_f = 0.40 in EtOAc/ \dot{r} hexane (50 : 50) or 0.21 in EtOAc/ \dot{r} hexane (30 : 70). For C₂₁H₂₅NO₄, MW: 355.43 calc. C 70.96 %, H 7.09 %, N 3.94 %; found C 70.75 %, H 7.00 %, N 4.07 %. ¹H NMR (500 MHz), δ : 7.42-7.29 (m, 10 H, C₆H₅); 5.28 (dd, 1 H, J_{4a,5} = 8.8 Hz, J_{4b,5} = 7.2 Hz, 5-H); 4.67 (q, 1 H, J = 5.1 Hz, CHCH₃); 4.21 (d, 1 H, J = 13.2 Hz, NCH₂C₆H₅); 4.05 (d, 1 H, NCH₂C₆H₅); 4.04 (dd, 1 H, J_{5',6a'} = 2.1 Hz, J_{6a',6a'} = 12.1 Hz, 6'-H_e or 6'-H_a); 3.79-3.77 (m, 1 H, 5'-H); 3.78 (dd, 1 H, J_{4',5'} = 1.1 Hz, 4'-H); 2.83 (ddd, 1 H, J_{4a,4b} = 12.9 Hz, 4-H_b); 2.73 (br s, 1 H, OH); 2.28 (ddd, 1 H, 4-H_a); 1.31 (d, 3H, CHCH₃). ¹³C NMR (125 MHz), δ : 139.38, 137.20, 129.46, 129.45, 128.42, 127.90, 127.52, and 126.53 (C₆H₅); 99.70 (CHCH₃); 80.63 (C-4'); 78.46 (C-5); 71.92 (C-6'); 64.96 (C-3); 63.60 (C-5'); 61.65 (NCH₂C₆H₅); 39.59 (C-4); 20.89 CHCH₃).

X-ray diffraction study: X-ray structure determination of 3a $C_{20}H_{23}O_4N$: colourless crystal $(0.40 \times 0.45 \times 0.80 \text{ mm}^3)$, grown from diethyl ether), $C_{20}H_{23}O_4N$, $M_r = 341.39$, hexagonal, space group P 6_1 , a = 10.03376(1) Å, c = 32.3577(4) Å, $\gamma = 120$ °, V = 2823.37(5) Å 3 , Z = 6, $D_x = 1.205$ g cm 3 , T = 297K. A Siemens SMART diffractometer (CCD area detector) and graphite monochromated Mo K α radiation, $\lambda = 0.71069$ Å, was used for all measurements. The cell dimensions were refined using 8192 strong reflections. A whole sphere of reciprocal space was collected by ω -scans $(0.3^\circ$ wide frames, 30 sec. exposure each) by combination of 8 sets with 4 different settings of φ angle $(0^\circ$, 90° , 180° , 270°) and two settings of detector angle $(-25^\circ$ and -55°). The collected data range is $3.8^\circ \le 2\Theta \le 67.64^\circ$ ($-15 \le h \le 15$, $-15 \le k \le 15$, $-50 \le l \le 50$). The crystal-to-detector distance was 6.21 cm. 46.603 reflections were collected and 7543 unique reflections [R_{int} = 0.0195, R $(\sigma) = 0.0145$] were obtained after correction for polarization and Lorents effects. Empirical psi-scan absorption (SADABS, $\mu = 0.84$ cm $^{-1}$) was done. The structure was solved by directs methods (SHELXS86) 19 and refined by full-matrix least-squares SHELXL93 software 20 using anisotropic temperature factors for non-hydrogen atoms, hydrogen atoms with isotropic temperature factors in idealized positions riding on the atom

to which they are attached (C-H = 0.96 Å for CH₃, C-H = 0.97 Å for CH₂, C-H = 0.98 Å for CH $s\rho^3$ hybridization, C-H = 0.93 Å for CH $s\rho^2$ hybridization and O-H = 0.82 Å for OH), 5914 reflections with F_o > 4 $\sigma(F_o)$, weights w = $1/[\sigma^2(F_o^2) + (0.0762P)^2 + 0.0814P]$ where P = $(F_o^2 + 2 F_c^2)/3$. Final R = 0.0473 and wR = 0.1213. Maximum shift/ σ in final least-square cycle < 0.02. Minimum and maximum difference electron densities were -0.17 and 0.24 e Å⁻³. As Flack parameter x = 0.50(65), absolute structure cannot be determined reliably, but is taken from the known absolute configuration of D-erythrose (and its precursor D-glucose). The ORTEP drawing of 3a is shown in Figure 1.

ACKNOWLEDGEMENT

The authors are grateful to the Slovak Grant Agency (No. I/4210/97) and Volkswagen-Stiftung for financial support. J. Kubáň and I. Blanáriková thank the Volkswagen-Stiftung for providing research stays at the University of Stuttgart (VW Special Programme, Project I/72948).

REFERENCES

- Tufariello, J. J. in 1,3-Dipolar Cycloaddition Chemistry, Padwa, A. (Ed.), Wiley Interscience: New York, 1984, Chapter 9, p. 83; Torssell, K. B. G. Nitrile Oxides, Nitrones, and Nitronates, VCH Publishers Inc.: New York 1988; Gothelf, K. V.; Jorgensen, K. V. Chem. Rev. 1988, 98, 863.
- 2. Fišera, L.; Al-Timari, U. A. R.; Ertl, P. in *Cycloadditions in Carbohydrate Chemistry*. ACS Monograph. Am. Chem. Soc., Washington 1992, p. 158.
- 3. Frederickson, M. Tetrahedron 1997, 53, 403.
- 4. Grünanger, P.; Vita-Finzi, P. *Isoxazoles. Part One.* In *The Chemistry of Heterocyclic Compounds*, Taylor, E. C.; Weissberger, (Eds.), Wiley, New York, 1991.
- Baggiolini, E. G.; Iacobelli, J. A.; Hennesy, B. M.; Batcho, A. D.; Sereno, J. F.; Uskovic, M. R. J. Org. Chem. 1986, 51, 3098; Brandi, A.; Cicchi, S.; Goti, A.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 1991, 2, 1063; Saito, S.; Ishikawa, T.; Kishimoto, N.; Kohara, T.; Moriwake, T. Synlett 1994, 282; Kametani, T.; Chu, S. D.; Honda, T. Heterocycles 1987, 25, 241; Merino, P.; Castillo, E.; Franco, S.; Merchan, F. L.; Tejero, T. J. Org. Chem. 1988, 63, 2371; Bernet, B.; Vasella, A. Helv. Chim. Acta. 1979, 62, 2411.

- a) Al-Timari, U. A. R.; Fišera, L.; Ertl, P.; Goljer, I.; Prónayová, N. Monatsh. Chem. 1992, 123, 999;
 b) Kubáň, J.; Blanáriková, I.; Fišera, L.; Prónayová, N. Chem. Papers 1997, 51, 378.
- Denmark, S. E.; Hurd, R. A.; Sacha, H. J. J. Org. Chem. 1997, 62, 1668; McGaig, A. E.; Meldrum, K. P.; Wightman, R. H. Tetrahedron 1998, 54, 9429; Hall, A.; Meldrum, K. P.; Therond, P. R.; Wightman, R. H. Synlett 1997, 123; Müller, R.; Leibold, T.; Pätzel, M.; Jäger, V. Angew. Chem. Int. Ed. Engl. 1994, 1295.
- 8. Taylor, D. L.; Nash, R.; Fellows, L. E.; Kang, M. S.; Syms, A. S. *Antiviral Chem. Chemother.* 1992, *3*, 273.
- 9. Preliminary communication: Kubáň, J.; Blanáriková, I.; Fengler-Veith, M.; Jäger, V.; Fišera, L.; *Chem. Papers* 1998, *52*, 780.
- 10. a) Hockett, R. C.; Collins, D. V.; Scattergood, A. J. Am. Chem. Soc. 1951, 73, 599; b) Barker, R.; MacDonald, D. L. J. Am. Chem. Soc. 1960, 82, 2301; c) Fengler-Veith, M.; Schwardt, O.; Kautz, U.; Krämer, B.; Jäger, V. Org. Synth., accepted for checking.
- 11. Hauske, J. R.; Rapoport H. J. Org. Chem. 1979, 44, 2472;
- 12.a) Jäger, V.; Müller, R.; Leibold, T.; Hein, M.; Schwarz, M.; Fengler, M.; Jarošková, L.; Pätzel, M.; LeRoy, P.-Y. *Bull. Soc. Chim. Belg.* 1994, *103*, 491; b) Jäger, V.; Fengler-Veith, M. Unpublished results. Fengler-Veith, M. *Dissertation*, Universität Stuttgart, 1996.
- 13. Dondoni, A.; Franco, S.; Junquera, F.; Merchán, F.; Merino, P.; Tejero, T. Synth. Commun. 1994 24, 2537.
- 14. Ball, D. H.; Jones, J. K. N. J. Chem. Soc. 1958, 905; Ball, D. H. J. Org. Chem. 1966, 31, 220;
- 15. DeShong, P.; Dicken, C. M.; Leginus, J. M.; Whitle, R. R. *J. Am. Chem. Soc.* 1984, *106*, 5598; Fray, M. J.; Jones, R. H.; Thomas, E. J. *J. Chem. Soc. Perkin Trans.* 1 1985, 2753.
- 16. Moses, S. R.; Wu, Y.-D.; Rondan, N. G.; Houk, K. N.; Schohe, R.; Jäger, V.; Fronczek, F. R. J. Am. Chem. Soc. 1984, 106, 3880.
- 17. Goti, A.; Cicchi, S.; Brandi, A.; Pietrusiewicz, K. M. Tetrahedron: Asymmetry 1991, 2, 1371.
- 18. Borch, R. F. Bernstein, M. D.; Durst, H. D. J. Am. Chem. Soc. 1971, 93, 2897.
- 19. Sheldrick, G. M. Acta Cryst. 1990, A46, 467.
- 20. Sheldrick, G. M. *Program for the Refinement of the Crystal Structures*. 1993, Univ. Of Götingen, Germany.
- 21. The final coordinates of 3a are deposited in the Cambridge Crystallographic Data Center.